Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

THE EFFECT OF SOCIAL ACTIVITIES ON PAIR PROGRAMMING: RESULTS
FROM AN EXPERIMENT

Hezekiah J. Phelps, Washburn University, hezekiah.phelps@washburn.edu
Jacob Dobler, Washburn University, jacob.dobler@washburn.edu

Zachery T. Glenn, Washburn University, zachery.glenn@washburn.edu
Dr. Wenying Sun, Washburn University, nan.sun@washburn.edu

ABSTRACT

Pair-programming is a programming method where two people use one computer to work simultaneously on the
same programming assignment. Previous research suggests pair-jelling plays an important role in how pairs
perform. Pair-jelling is where the pair engages in activities to solidify and enhance their partnership. However,
little empirical research has been done in the area of pair-jelling. In this paper, we explain the theory behind
working in pairs, and why it is important for a pair to have effective communication. We also conducted an
experiment to investigate the benefits of pair-jelling by comparing the quality of a programming assignment between
two groups of pair programmers, one of which was engaged in a pair jelling activity. Our results suggest that there
was no major difference in the time to complete the project and the quality of the program between the two test
groups. This could be due to a multitude of reasons, including program complexity, social activity type, and time
constraints.

Keywords: Pair Programming, Pair-Jelling, Social Interaction

INTRODUCTION

Programmers use a variety of techniques and strategies when working on software projects. One commonly adopted
strategy, especially in agile development, is pair programming. Pair programming is one of the ten principles in
Extreme Programming which is a popular version of agile software development. Pair programming is when two
programmers work side-by-side at one computer collaborating on the same design, algorithm, code or test [10]. The
programmer at the keyboard is called the “driver” and the programmer “watching” from the side is known as the
“navigator”. The driver is in charge of typing the code, compiling the code, and switching between applications
during the development process. The navigator is responsible for evaluating the driver’s code as it is being written,
checking for any syntax errors or formatting faults, as well as offering alternate approaches to the design of a
program. It is important to have the two programmers take turns typing, so neither one will become too complacent
in their role. One requirement for a successful pair programming venture is a constant flow of communication in the
form of ideas and suggestions between the two programmers. It appears that many businesses have used this
approach on large projects and claimed that it has helped, but there is a lack of quantitative results. Some
experiments have been done to show that pair programming is better with time management and with overall quality
[6, 9]. The result of economic studies show that pair programming makes sense economically when the market
pressure is high [8]. For large scale software projects, there are few drawbacks in exploring the approach of pair
programming.

Judging from previous studies, it appears that having two programmers sit at one computer and collaborate with
each other on one project improves the time, efficiency, and quality of the project. The simplest way of devising
why this is would be to look no further than the old adage “Two heads are better than one.” It would seem fairly
obvious that the combined knowledge of two programmers can help deliver a higher quality program at a more rapid
speed, but it would also seem that there may be some initial drawbacks to this approach. One of the drawbacks

169

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

would be that the programmers may not know each other very well at all, and therefore may not feel too comfortable
working together. One way of improving the relationship between the two programmers is an activity called pair-
jelling. Pair-jelling is the process in which the pair of programmers engages in activities so they can get comfortable
with each other. It is the time needed for a conditioned solo programmer to become a pair programmer [10]. It is
claimed that pair-jelling is an effective tool for long term programming or other group work. Once a pair jells, future
jelling is considered irrelevant and thus increasing the efficiency of work done by pair programmers. Over time,
programmers learn the strengths and weaknesses of each member, and with this knowledge they can adjust their
activities to exploit strengths and avoid weaknesses [10].

However, there is a lack of empirical evidence to show that pairs which are jelled from the beginning will perform
better than groups who go into the project not knowing each other well at all. Therefore, the purpose of this research
is to answer the following research questions:

1) Will a pair who engages in a social activity before working on a project communicate more effectively during the
project than a pair who does not engage in a social activity?

2) Will a pair who engages in a social activity produce fewer errors and have a higher completion rate in their
programming assignment than a pair who does not engage in a social activity?

3) Will a pair who engages in a social activity complete their programming assignment faster than a pair who does
not engage in a social activity?

We answered these questions based on the results from an experiment we conducted. The results of this study have
the potential to influence further research into the area of pair programming.

The rest of the paper is organized as follows: The Literature Review section summarizes and briefly discusses some
of the previous research that is relevant in the area of pair programming. The Group Theories section covers the
theory behind why groups function the way they do, and important elements that influence the way a group behaves.
The Hypotheses section lists the hypotheses we came up with, as well as the supporting arguments for these
hypotheses. The Methodology section summarizes how we conducted our experiment, including how we collected
and analyzed important data from this experiment. The Results section presents our results and explains what
statistical relevance they have, if any. The Discussion section extrapolates our thoughts on these results, why we
think they came out the way they did, and what we may have done differently in retrospect. Finally, our Conclusion
section presents our closing thoughts on our experiment and what we learned from this project.

LITERATURE REVIEW

Several experiments have been found regarding the process of pair programming. The experiments varied between
the experimental group (whether they used students versus professionals), and on duration (whether it was a couple
assignments during one semester versus several assignments and groups over a year or more). Overall, the
consensus on pair-programming is that it is effective and powerful, but many programmers who have years of
experience working alone are initially hesitant to work in pairs. For example, an experiment was conducted to
compare individuals working on a programming problem and teams of two working on the same problem. The
finding was that the programmers in pairs took an extra 60 percent minutes more to complete the entire assignment,
however to complete the actual task it took the pairs 40 percent less time with more efficient algorithms and code
[10].

Although most experiments show that pair programming can be beneficial, it may not always be the case that the
programmers will be working together all the time. This may be due to various reasons including health issues and

170

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

timing conflicts. Since this is the reality of most work environments, programmers have “prioritized which parts of
the development cycle are most important to work together, which can be done separately, and what to do with the
independently developed work when reuniting” [10]. As explained by Williams, two steps in which it is critical for
pairs to work are the pair-analysis and pair-design stages. These are the stages in program development when
programmers build an understanding of the design process, analyze the requirements, and create a plan on
implementation processes. The advantage of having pairs work together during these stages allows for more thought
out designs and less margin for error in the finished product. The two programmers can bounce ideas off each other
and have more of a chance of catching any possible errors. The next stage of pair programming is pair-
implementation. This stage is slightly less critical than the previous two, as programmers can choose to implement
on their own at any point. Depending on the business requirements for the program and the simplicity of the
implementation, it is sometimes easier to work individually at this stage. However, working together for this stage in
the driver/navigator format is an advantage for larger projects. This way the navigator can critique, catch errors, and
think of alternative methods for completing the project while the driver types up the actual code. The pair can switch
roles so they can keep as many options flowing between the two as possible. If the pair decides to do the
programming solo, they can meet up after the pair-implementation process to come up with test cases for their
program, and this leads into the final sage, pair-testing. This is the least critical stage, as long as the programmers
meet to create these test cases. The actual testing can be done individually, and in the event of any errors being
found, the programmers can meet to resolve the problem [10].

Another study shows the effectiveness of pair programming based on the complexity of the software system and the
knowledge and expertise of the programmers. The experiment used 295 Java programmers from companies in
Norway, Sweden, and the U.K. [2]. Some of the measurements held for this experiment were the duration necessary
to complete the assignment, the programming hours needed between the pairs compared to an individual, and the
correctness of the assignment by each group. The programmers were given a training task to understand the
experiment process, a pretest task to gauge their level of expertise, and four main tasks to measure the effects of the
pair programming against individual programmers. Overall, the duration of the pairs was 8 percent less than that of
the individuals to complete the assignment correctly. This duration corresponds to an 84 percent increase in effort by
pairs and a 7 percent increase in correctness compared to individuals [2]. The experiment shows slightly different
results when looking at the difficulty of the task. When given a simple task, the pair programmers had a 20 percent
decrease in duration when compared to individuals, but a 60 percent increase in effort. Surprisingly, it showed a 16
percent decrease in correctness compared to individuals. When given a more difficult task, pairs took a 6 percent
increase in duration, a 112 percent increase in effort, and a 48 increase in correctness [2]. This experiment shows
finer details about pair programming in that with a simpler programming task, duration is decreased. However with
a more difficult programming task, correctness is increase greatly [2].

From the previous examples we can see the implied effectiveness of pair programming, but we also want to look at
techniques that will help a pair communicate better from the beginning of a project, and this is where we turn our
attention to pair jelling. Indeed, there is an initial adjustment period in the transition from solitary to collaborative
programming. In industry, this adjustment period has historically taken hours or days, depending upon the
individuals [10]. An experiment conducted in the area of pair jelling studied the duration it took for a pair of
programmers to complete an assignment compared to an individual - however it then studied the durations for a
second assignment with the same pairs. For the first assignment, the pairs finished in shorter elapsed time and had
better quality, but they took, on average, 60% more programmer hours to complete the assignment when compared
to the individuals. After the adjustment time, this 60% decreased dramatically to a minimum of 15%. The end of the
second assignment marked an important milestone -- all students reported that they had overcome their constant
urge to grab the mouse or keyboard from their partner’s hands! [10]. We can see from this study conducted by
Jeffries that it takes a certain amount of time, and most likely a certain number of programming projects, before a
pair will feel comfortable enough that they will overcome the initial loss of programming time to adjust.

171

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

GROUP THEORIES/THEORETICAL FOUNDATION

Working in groups can be beneficial in the long run. A key factor in group dynamics is the outcome expectation for
group members. Group members extend task persistence when they have a positive expectation on the outcome of
their group work [7]. There may also be extra motivation found in pair programming, as a person may strive to work
harder towards their goals as not to let their teammate down. The kind of mutual trust and respect that may build
among teammates has the potential to translate to a higher quality product than if a person worked on it alone.

Another requirement of successful group performance is a person building a social identity with their teammate.
According to Henri Tajfel, group members share a common identity with one another. They know who is in their
group, who is not, and what qualities are typical of insiders and outsiders. The perception of themselves as members
of the same group or social category - this social identity - creates a sense of we and us, as well as a sense of they
[1]. There is also the idea of interdependence - members must depend on one another; their outcomes, actions,
thoughts, feelings, and experiences are determined in part by others in the group. “Some groups create only the
potential for interdependence among members. The outcomes of people standing in the queue at a checkout counter
in a store, audience members in a darkened theater, or the congregation of a large church are hardly intertwined at
all. Other groups such as gangs, families, sports teams, and military squads create far higher levels of
interdependency since members reliably and substantially influence one another’s outcomes over a long period of
time and in a variety of situations” [5].

The previously mentioned group dynamics are good to have, but they may not get a team very far if they don’t have
the appropriate work environment to flourish, or enough control over the project to make important and meaningful
decisions together. Experiments have demonstrated clearly that the productivity of work groups can be greatly
increased by methods of work organization and supervision which give more responsibility to work groups, which
allow for fuller participation in important decisions, and which make stable groups the firm basis for support of the
individual’s social needs [3, 4]. A supervisor always needs to have a certain amount of control over what a team is
working on so that they may make sure that the development process is moving in the right direction (rather than
spinning in circles). However, letting groups make certain decisions during the development process may pay off in
the long run, because it gives them a catalyst to build upon the aforementioned trust and respect.

So how do we tie all of this together in our experiment? We believe that the social activity will help to build a
stronger social identity among members than the groups who do not participate. These groups should feel more
comfortable with each other heading into the project. Our social activity requires interdependence. However, it is
possible for one person to do all of the work on the programming project, while the other person is silent. Therefore
in order to enforce interdependence we will have the programmers switch “roles” every ten minutes. We also choose
to give the pairs the initial specifications for the programming project, but allow them to make all appropriate
decisions on how to proceed with the development process with their teammate. We hope that using these guidelines
for interaction will help us obtain some meaningful communication among participants.

HYPOTHESIS

We have used the previous research to develop three main hypotheses we wish to test through our experiment. We
used the data we collected from a pair’s finished (or unfinished) program to test these hypotheses.

172

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

Previous studies about pair jelling suggest that the more jelled a pair is, the more comfortable they are together, and
the better they will communicate. This means more natural dialogue and better conversation flow. We believe that
introducing the pair to each-other in a setting where they can openly converse before jumping right into the
programming assignment will affect their conversation throughout the duration of the assignment. This can also be
affected by the teammates building a social identity with one another. Therefore we hypothesize:

Hy: Pairs who engage in social activities will converse more (have a higher conversation rate) than pairs who do
not engage in social activities.

We form the following hypothesis on the basis of the first; we believe that groups that converse on a more regular
basis will be able to discuss and solve problems more effectively during the development process. This will in turn
affect the overall quality of the program, whether it is more accurate output, or cleaner and more efficient code in
general. Though the programming experience of both individuals in the group will also factor into this hypothesis,
we believe that if the experience is evened out among the participants (which it should be, considering they are all in
the same class) then stronger communication will be the deciding factor. Therefore we hypothesize:

H,: Pairs who engage in social activities will produce fewer defects in their program than pairs who do not.

The following hypothesis is also based upon communications. However it is also based on the theory that a group
that has already formed some sort of social identity through the activity will “hit the group running”, or take less
time during the project to learn about their partner than they would otherwise. They may apply some of the things
they learned about their partner during the social activity during the programming assignment. Since we are
comparing pairs to pairs, and not pairs to individuals, we can only assume that the extra time the pair gets to spend
together before attempting the program can only help them complete it quicker. Therefore we hypothesize:

H;: Pairs who engage in social activities will complete their program faster than pairs who do not.

METHODOLOGY

Our experiment’s sample contained solicited classmates, coworkers, and friends who had at least a basic
understanding of java programming. Our sample size was 46. A sample size of 46 participants allowed us to have 23
pairs. 12 of these pairs participated in both the social activity and the programming assignment, while the other 11
pairs only participated in the programming assignment. These 46 participants were split up into four different
experimental sessions, which made it much more manageable for us to conduct and regulate. Our allotted time to
conduct the experiment was 1 hour 15 minutes, in which we used 15 minutes for the social activity and 1 hour for
the programming assignment.

The participants knew ahead of time that they would be taking part in a programming experiment for which they
would receive extra credit. However the specifications of the programming assignment, including the fact that they
would be working in pairs, and some might be involved in social activities, were not revealed to them until they
showed up to class.

Upon arrival, participants were divided into two groups randomly. Each participant drew a colored number out of a
container. If a participant drew a blue number three, he/she was paired up with the other blue three. The color of the
number decided which pairs would participate in the social activity. Blue numbered pairs participated in the social
activity. Participants who drew green numbers found their partner and began working on the programming
assignment. Assigning numbers this way proved to be an effective method all while avoiding bias or favoritism in

173

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

the eyes of our participants. Each workstation in the computer lab was assigned with a corresponding color/number
combination to keep track of pairs and workstations. Workstations were labeled so that no pair would be sitting by a
pair of the same color.

Once divided, the pairs participating in the social activity were escorted to a nearby remote location while the other
pairs began the programming assignment. Our social activity was limited to fifteen minutes, in which each pair spent
their first five minutes interviewing each other. Each participant was given a piece of paper with predefined
interviewing questions on it. Participants used the questions as a question bank, but were free to ask other questions
that they were comfortable with discussing between each other. We chose to have these pairs conduct introduction
interviews with predefined questions because this would serve as an icebreaker, allowing each partner to become
comfortable with the other. Predefined questions were chosen to keep the interview short and focused. Once the
introduction interviews were complete or five minutes had elapsed, we started the social activity.

The basis of our social activity was that it needed to engage both members of a team so that they strived to complete
a common goal by interacting with each other. This could have been either a physical activity such as a game of 2-
on-2 basketball, or a mental activity such as solving a puzzle. How the team interacted with other teams is far less
important than how the two members of the team interact with each other. Guesstures was chosen as the social
activity because it would force our pairs to continue to interact verbally but also through facial expression and body
language. The game will also push the pairs to work together towards a goal - the goal of winning. During a round
of Guesstures, one member selects four “action” cards and places them on a timer. When the timer begins, the
“actor” begins to act out the words on the “action” cards while their teammate tries to guess. The physical
communication from the “actor” and the verbal communication from their member become more frantic as time
runs out. After completing the social activity, the pairs were brought back to the initial location and began working
on the programming assignment.

The programming assignment we decided on was influenced by several different factors. First of all, it needed to be
challenging enough to require the pair to collaborate; however it couldn’t be too advanced as most of our
participants were likely to have minimal programming experience. It also needed to be something that could be
completed over the course of one hour. Full completion was not required, though we used completion as a unit of
measure of how effectively the pair worked together, amongst other things. We also needed to figure out how much
freedom to give our pairs while working on the assignment. We could have either given them a very specific list of
programming steps, or we could specify what the desired results were, and let each pair start at point A and arrive at
point B by their method of choice. All pairs had access to the internet, as this was a good source of information in
completing the project when neither group member knew what to do. How the pair interacted while looking up
information on the internet was as much value to us as the programming work itself.

Each pair was given a sheet of paper detailing the programming assignment. At the top of each assignment sheet
was a description of the driver and navigator roles of pair programming, and instructions requiring the pair to switch
roles every ten minutes. At each ten minute interval, we announced and enforced our requirement of each pair to
switch roles.

Throughout the duration of the experiment, we collected data individually on how the pairs communicated with each
other. This data was part observation and part completion. Observation was used to link our findings together and
identify reasons for why some groups did better than others. The criteria with which we graded each group are listed
as four measures of conversation duration, flow, quality, and topicality. Conversation duration measured how long a
pair held their conversation. Conversation flow measured how active each partner is in their pair’s conversation.
Conversation quality measured whether the pair’s conversation consisted of questions and responses, suggestions,

174

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

and feedback. The conversation topicality measure was determined by comparing a pair’s conversation topic to the
topic of our programming assignment. Each measure was graded with a score ranging from 1 (low), 3 (medium),
and 5 (high).

The more important form of data we collected was how complete each group’s program was and how accurately it
produced the desired result. In order to judge this we needed to complete the program ourselves. During completion,
we tried to find the most complete and efficient way to produce the desired result. Since this assignment could have
been completed several different ways, there was no “right” or “wrong” answer. Although, some answers were more
efficient than others. Professionalism in the program, including comments in the code and documentation of the
program were looked for and graded on.

The five measures we used to grade each program were assignment completeness, documentation, readability,
syntax errors, and output errors. When grading assignment completeness, in the program, we looked for a
completely working program that produced the desired output. Documentation measured the amount of explanation
within the code. Readability measured how well the pair organized their program code and if it was easy to follow.
Syntax errors measured the number of errors within the code that prevented the program from compiling and
running. Output errors measured the quality of the output, whether the output contains the desired results, and
looked neat. The scores ranged from 0 (requirements were not met), 1 (some requirements were met), and 2 (all
requirements were met).

After the experiment was finished, we individually graded each programming assignment. Once all the grading was
complete, we averaged our observational scores as well as the scores from each of the programming assignments.

RESULTS

We used 46 students who, at the time of the experiment, were in beginner Java programming courses (Intro to
Structured Programming and Contemporary Programming Methods). The students were split into 12 social groups
and 11 non-social groups. Many of the students have had experience in programming development outside of the
courses they were taking. Below is a table showing the demographics of the students who participated in the
experiment.

Table 1: Participants’ Demographics

Gender Age Prior Programming Programming Classes
Male: 38 82.6% Min: 18 Experience I: 18 39.1%
Female: 8 17.4% Max: 66 Yes: 27 58.7% 2: 6 13.0%
Mean: 25.63 No: 19 41.3% 3: 17 37.1%
4: 3 6.5%
540 2 43%

Below is a table that shows all of our final scores for the social group and non-social group. We used an independent
sample t-test to calculate our mean (average scores), standard deviation (the variation from the mean in our scores)
and statistical p-value (significant difference). The p-value determines whether the averages between the two groups
are significant, and represents that with a number value. A result of 0.05 or smaller shows that the difference is truly
significant. When taking this measurement, we assumed that there was an equal variance between the two groups
since all the participants were in the same class and on the same level of knowledge about the topic. In the table,
group 1 shows the results for our social group and group 2 is our non-social group.

175

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

Table 2: Results on Independent Sample T-Test

Hypothesis Measure Group | Mean Standard Deviation | P-Value
H, Conversation Duration 1 3.417 1.240 0.646
2 3.182 1.167
Conversation Flow 1 3.500 1.087 0.925
2 3.545 1.213
Conversation Quality 1 3.833 1.193 0.559
2 3.545 1.128
Conversation Topicality 1 4.833 0.577 0.459
2 4.636 0.674
H, Assignment Completeness | 1 1.417 0.668 0.852
2 1.364 0.674
Documentation 1 0.250 0.452 0.923
2 0.273 0.646
Readability 1 1.833 0.389 0.928
2 1.818 0.404
Syntax Errors 1 1.917 0.288 0.618
2 1.818 0.603
Output Errors 1 1.250 0.621 0.814
2 1.182 0.750
H; Duration (minutes) 1 55:750 | 7:136 0.798
2 56:455 | 5:768

In regards to our first hypothesis, the following are the results between the two groups that reflect our findings in
their communication. For the conversation duration, we saw that the social group averaged a 3.417 score on our
scale and the non-social group averaged 3.182. Conversation flow resulted in the social group scoring a 3.500
average and the non-social group scored a 3.545. The conversation quality showed that the social group averaged a
3.833 score and the non-social a 3.545. Finally, the conversation topicality resulted in the social group showing a
4.833 score and the non-social group a 4.636. Scores between both groups are very close together. There are
differences between the two groups, but the difference is not statistically significant. Therefore, H1 is not supported.

In regards to our second hypothesis, the following are results that reflect each group’s work on the programming
assignment. For actual completion of the assignment, we had six social pairs and five non-social pairs finish the
program completely. On average, the social group was scored a 1.417 for completion and the non-social group a
1.364. For documentation, the social group averaged a score of .250 and the non-social group averaged .273.
Readability results show that the social group averaged a score of 1.833 and the non-social group averaged 1.818.

176

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

For syntax errors, the social group scored a 1.917 and the non-social group scored 1.818. Finally, the output errors
show that the social group had a score of 1.250 and the non-social group had a score of 1.182. H2 is not supported

In regards to our third hypothesis, we timed each pair for one hour to complete the assignment. Five of our social
pairs and four of the non-social pairs finished completely before the hour had passed. The average time for the social
group to finish the assignment was 55:750 minutes, and the non-social group’s average time was 56:455 minutes.
H3 is not supported.

DISCUSSION

Our first hypothesis is pairs who engage in social activities will converse more (or have a higher conversation rate)
than pairs who do not engage in the social activities. The scores for the communication categories do not show any
significant difference between the two groups. Because the scores are so close between the two groups, our first
hypothesis was not supported with this experiment. As time progressed during the experiment, we observed that
conversation amongst all the pairs started off steadily, but then increased greatly as the experiment progressed. The
majority of the pairs stayed on topic during the experiment. The conversation duration and quality were consistent
within the groups. All the pairs sustained good communication throughout the entire experiment and we noticed that
the non-social group had a couple more pairs with better flow of conversation. This may be because the non-social
groups did not participate in the social activity and needed to compensate the lack of jelling with more conversation
to complete the assignment. Another reason for why we believe the communication scores are so close together is
because our participants were all from the same college class. We conducted our experiment with only a month left
of the school semester, and by then students in the class had ample time to get to know one another. The students
may already have had an understanding of one another’s abilities and knowledge with programming because all the
students were somewhat familiar with one another prior to our experiment. Our social activity did not have as much
influence on their teamwork because the participants were already comfortable (or already jelled?) with each other.

Our second hypothesis is pairs who engage in social activities will produce fewer defects in their program than pairs
who do not. The categories with which we graded the program assignment show that there is not much significant
difference between the two groups. Because the scores for our programming assignment are close between the two
groups, this means that our second hypothesis is not supported. All of the pairs had little to no documentation in
their program except for one pair in our non-social group. We noticed that due to the time limit on the program
assignment, most groups decided to hold off on documentation in the code and only add some if time permitted at
the end of the assignment. Almost all of our groups finished the first half of the program assignment and several of
those pairs got close or finished the second half of the program assignment. Most of the pairs produced programs
that were easy to read and only a couple programs had syntax errors that prevented the program from compiling and
running. The output of the programs differed from pair to pair. Many of the programs gave an output that met our
requirements. A couple of the outputs gave produced some of our requirements and lacked in neatness or clarity. A
large reason why we believe our scores for the programming assignment categories are so similar is again because
of our selection of participants. Since we used students who are in lower level programming classes, most of their
experience with programming is within the classes. This means that they each might have been taught to program in
a similar fashion.

Our third hypothesis is pairs who engage in social activities will complete their program faster than pairs who do
not. Because the groups took about the same amount of time to complete the assignment, our third hypothesis is also
not supported. We noticed that putting a time limit on how long pairs can work on the program assignment may
have prevented the pairs from working together long enough to see any significant difference. Previous experiments

177

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

show that groups who have jelled work better on more complex program assignment and perhaps our choice of
program assignment did not provide enough of a challenge for the social pairs to fully utilize their jelling process.

Although all our hypotheses were not supported by our experiment, we can see from our previous research that
conducting a social activity with groups could influence the performance of a pair. We noted possible reasons from
our experiment as to why we were unable to show the same results. We speculate different approaches in preparing
and conducting lab experiments in slightly different settings could provide diverse results.

CONCLUSIONS

Our experiment has given us much insight into how businesses have evolved with their program development
processes by pairing two programmers together to combine their skills to complete a programming assignment. Pair
programming has allowed many advances in software development and continues to pick up popularity through
businesses. We learned through prior research that pairs of programmers who engage in pair jelling activities will
show improved results in the quality, correctness, and time necessary to finish a program assignment. We also
learned that in any group activity, if the pairs of the group have positive thoughts about how the group work will go,
then the success in the group will be that much greater. Using these theories, we developed an experiment process
that we thought would support our three hypotheses.

Through our experiment, it was our intent to show that a pair of programmers who engaged in a social activity prior
to working on a programming assignment would have improved communication and programming quality compared
to a pair of programmers who are not engaged. We conducted an experiment and tested whether groups with pair-
jelling would work better than groups without the pair-jelling process. After analyzing the data, we found there was
no significant difference between the two groups.

However, we do not think that our results diminish the importance of social activities between the pairs. Our results
are true given the specific subjects, constraints, and programming environment. With changes to our experiment
process, we could show that the pair-jelling process is a necessary aspect to pair programming. We suggest one or
more of the following future research to be done. An increase in the sample size or a more diverse sample size
could show more variance between the groups. Another variable change that could be made is allowing more time
for the completion of the programming assignment. Increasing program complexity may also present a different
result. Another variable would be to increase the duration and frequency of engaging pairs in the social activity. If
the number of programming assignments is also increased along with the frequency of social activities, we could see
the social group improve with each programming assignment. Finally, since we used students for our experiment,
we could have conducted our experiment towards the beginning of the semester before they had an opportunity to
get to know each other through the progression of the class. If one or more of these changes are made, we believe
our experiment would show the power of pair-jelling and the effects of social activities on pair programming.

REFERENCES

—

. Abrams, D. (2005). The Social Psychology of Inclusion and Exclusion. Psychology Press, Feb 1, 2004.
2. Arisholm, Erik, et al. "Evaluating pair programming with respect to system complexity and programmer
expertise." Software Engineering, IEEE Transactions on 33.2 (2007): 65-86.

Cartwright, D. (1951). Achieving Change In People: Some Applications of Group Dynamics Theory. Human
Relations. 4(1), Sage Publications.

Coch, L., & French, J.R.P, Jr., (1948). Overcoming Resistance to Change, Human Relations, 1(4), 512-532
Forsyth, D. (2009). Group Dynamics. Wadsworth, Cengage Learning 2009.
. J. Nosek. The case for collaborative programming. Communications of the ACM, 41(3):105-108, Mar. 1998.

w

SRS

178

Issues in Information Systems
Volume 14, Issue 1, pp.169-179, 2013

. Jung, D. L., & Sosik, J. J. (1999). Effects of group characteristics on work group performance: A longitudinal
investigation. Group Dynamics: Theory, Research, and Practice, 3(4), 279-290. doi:
http://dx.doi.org/10.1037/1089-2699.3.4.279.

. Miiller, M.M., & Padberg, F. (2004). An Empirical Study about the Feelgood Factor in Pair Programming.
Software Metrics, 2004. Proceedings. 10th International Symposium on.

. Nawrocki, J., & Wojciechowski, A. (2001). Experimental evaluation of pair programming. European Software
Control and Metrics (Escom), 99-101.

10. Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair

programming. Sofiware, IEEE, 17(4), 19-25.

179

